
Information Sparsification in Visual-Inertial Odometry

Jerry Hsiung, Ming Hsiao, Eric Westman, Rafael Valencia, and Michael Kaess

Abstract— In this paper, we present a novel approach to
tightly couple visual and inertial measurements in a fixed-lag
visual-inertial odometry (VIO) framework using information
sparsification. To bound computational complexity, fixed-lag
smoothers typically marginalize out variables, but consequently
introduce a densely connected linear prior which significantly
deteriorates accuracy and efficiency. Current state-of-the-art
approaches account for the issue by selectively discarding
measurements and marginalizing additional variables. How-
ever, such strategies are sub-optimal from an information-
theoretic perspective. Instead, our approach performs a dense
marginalization step and preserves the information content of
the dense prior. Our method sparsifies the dense prior with a
nonlinear factor graph by minimizing the information loss. The
resulting factor graph maintains information sparsity, struc-
tural similarity, and nonlinearity. To validate our approach,
we conduct real-time drone tests and perform comparisons to
current state-of-the-art fixed-lag VIO methods in the EuRoC
visual-inertial dataset. The experimental results show that the
proposed method achieves competitive and superior accuracy
in almost all trials. We include a detailed run-time analysis to
demonstrate that the proposed algorithm is suitable for real-
time applications.

I. INTRODUCTION

State estimation is an essential component for autonomous
mobile robot operation. For instance, a robust and accurate
state estimator is required for agile control and planning
in dynamic and challenging scenarios such as indoor and
GPS-denied environments [4]. However, designing a real-
time state estimator is nontrivial because of limitations such
as computational resources and energy capacity. Therefore,
a key research focus in the field of localization is to find
efficient ways to fuse various sensor information while
providing optimal state estimation.

In recent years, much attention has been given to directly
combining cameras and inertial sensors due to the com-
plementary nature of their information [28]. While inertial
sensors are responsive in short-term dynamics, cameras pro-
vide rich exteroceptive information for long-term navigation.
In particular, Visual-Inertial Odometry (VIO) has shown
effectiveness in challenging scenarios such as indoor and
GPS-denied environments compared to previously existing
methods. The ability to navigate indoors is particularly
important in applications such as search and rescue, damage
inspection, and mapping. In densely populated cities and
natural environments like forests, VIO could be used to better
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Fig. 1. The trajectories of the proposed method and the groundtruth on
EuRoC Vicon Room 2 dataset [3]. The result shows the proposed algorithm
achieves highly accurate state estimation in real-time.

aid localization when combined with existing methods that
utilize GPS and other global reference points.

In considering efficiency, robustness, and accuracy, typical
VIO systems employ either an Extended Kalman Filter
(EKF) or a graph-based optimization algorithm to combine
inertial information with existing visual odometry methods
[4]. While an EKF is known for its efficiency, it is generally
less accurate than an optimization approach, which is often
computationally expensive. To combine the best of the two,
we focus on a fixed-lag smoothing VIO framework, which
performs graph optimization on a fixed window of variables
in order to bound computational complexity while achieving
better accuracy compared to an EKF. However, there are
several known drawbacks in a fixed-lag framework. 1) In or-
der to bound computational complexity, a fixed-lag smoother
marginalizes out variables, which requires linearizing the
system by fixing linearization points. As a consequence,
it no longer describes the original nonlinear optimization.
2) This in turn limits the ability of the fixed-lag smoother
to converge to the optimal solution at future timesteps
because marginalized variables are no longer optimizable. 3)
Furthermore, repeating the marginalization process creates a
prior that densely connects the remaining variables, which
significantly decreases computational efficiency.

To address these shortcomings, we propose a novel
information-theoretic approach for a fixed-lag VIO system
by utilizing sparsification online. The proposed method
maintains the original nonlinear VIO optimization while
preserving most of the information and sparse structure. Our
main contributions are:
• To the best of our knowledge, this is the first work

employing sparsification in the context of fixed-lag VIO
to maintain sparsity while minimizing information loss.

• We detail the derivation and design of our sparsi-
fication methodology, which retains the sparsity and



nonlinearity of the graphical model in the presence of
marginalization.

• We conduct real-world experiments with our software
pipeline running on-board an Autel X-Star drone, and
provide comparisons of our approach to the current
state-of-the-art fixed-lag VIO methods on the EuRoC
visual-inertial dataset [3].

• We provide a detailed run-time analysis to demonstrate
that the proposed algorithm is suitable for real-time
application and suggest ideas for further acceleration
of the proposed algorithm.

II. RELATED WORK

VIO algorithms may be roughly categorized into two dif-
ferent types of systems. A loosely-coupled system consists of
a distinct vision component such as PTAM [25] or DSO [11]
to compute visual data as odometry information [43, 12, 26].
The system then combines the odometry data with inertial
data to compute the joint solution. In contrast, a tightly-
coupled system directly incorporates visual and inertial data
in a single framework [28, 33, 38, 32], which is shown to
be the more accurate approach [28].

Both loosely-coupled and tightly-coupled systems may
also be categorized as either filtering-based [31, 2, 44] or
optimization-based [28, 33, 38, 22]. Filtering-based meth-
ods are computationally efficient; however, they are known
for accumulated linearization errors and inconsistency is-
sues especially in highly nonlinear systems [35]. Huang et
al. [18, 19], Li et al. [29], and Hesch et al. [16] propose
the First Estimate Jacobian (FEJ) EKF and the Observability
Constrained (OC) EKF to limit such issues by enforcing fixed
linearization points. Optimization-based methods solve for
the optimal estimate by iteratively minimizing the measure-
ment residual. They require more computational resources
but achieve higher accuracy. However, the sparse nature of
VIO allows existing optimization-based methods to utilize
sparsity and apply efficient solvers such as iSAM2 [24],
g2o [27], Ceres [1], and SLAM++ [21] to achieve real-time
performance.

Our method, like [28, 33], focuses on the tightly-coupled
fixed-lag smoothing framework, which combines advantages
from both filtering and batch optimization methods [9].
A fixed-lag smoother maintains a bounded computational
complexity by fixing the number of target variables in the
optimization window while allowing nonlinear optimization
to solve for the optimal solution.

To be able to efficiently solve a fixed-lag optimization,
existing methods exploit its sparsity in the information
form [15, 13, 41]. Sparsity is an important property of a
SLAM system [15, 7], which both filtering-based methods
and optimization-based methods benefit from. For instance,
Eustice et al. [13] and Thrun et al. [37] exploit the sparse
structure and develop information filters to efficiently solve
the landmark-based SLAM problem. Existing graph solvers
[23, 24, 27, 1] exploit sparsity for efficient optimization.
In factor graph SLAM, the information matrix specifies the
weights and connectivity between variables [7]. However,

as the optimization window grows over time, a fixed-lag
smoother needs to marginalize variables to maintain a con-
stant computational complexity [45].

Successive marginalizations create “fill-in”, additional
non-zero entries in the otherwise sparse information matrix,
which significantly reduces computational efficiency [15]. To
avoid such issue, current state-of-the-art methods such as
OKVIS [28] and VINS-MONO [33] 1) selectively discard
measurements for sparsity and 2) marginalize additional
variables. From an information-theoretic perspective, the
information content of the optimization window is reduced
and the marginalized variables are no longer optimize-able.
The solution to the consecutive optimizations will no longer
be optimal with respect to the original problem. As opposed
to existing methods, our algorithm addresses the aforemen-
tioned issues by incorporating information sparsification to
minimize the information loss while maintaining sparsity.

Existing literature in sparsification focuses on the context
of large SLAM pose graphs [20, 6, 17, 10]. Wang et
al. [42] formulate the sparsification problem by minimizing
Kullback-Leibler divergence (KLD) in a laser-based SLAM
application. Carlevaris-Bianco et al. [5] propose a generic lin-
ear constraint (GLC) which utilizes the Chow-Liu tree to ap-
proximate the information of the Markov blanket. Our work
follows Mazuran et al.’s Nonlinear Factor Recovery (NFR)
[30], which uses specified nonlinear factors to approximate
the dense prior by KLD optimization. To our knowledge,
our work is the first to demonstrate online sparsification in
a fixed-lag VIO framework. We show that our methodology
achieves state-of-the-art performance on a public test dataset
and is suitable for real-time state estimation.

III. PROBLEM FORMULATION

At each time w, our fixed-lag smoother optimizes a
window of states :

Xw =
{
Kw,Fw,Lw

}
(1)

where the set K = {K1, . . . ,Km} contains m consecutive
keyframes K; F = {F1, . . . , Fn} contains n most recent
frames F ; L = {L1, . . . , Lp} contains p landmarks L.

For each frame Fi or keyframe Ki, the IMU state xi is
defined as:

xi =
[
ξ>i ,v

>
i ,b

>
i

]> (2)

where ξ ∈ R6 is the minimum representation of the 3D
robot pose, v ∈ R3 the velocity, b =

[
b>a ,b

>
g

]> ∈ R6

the IMU accelerometer and gyroscope biases. The mea-
surements Zi associated with each Fi or Ki consists of
a set of q camera measurements Ci = {ci1, . . . , ciq} and
a relative or marginalized IMU measurement Ii between
two consecutive frames or keyframes respectively. We follow
the IMU preintegration method [14] to generate the relative
IMU measurement. The marginalized IMU measurement is
detailed in Section IV-A. We define each landmark Lj as a
3D point l ∈ R3 in the world frame.

Using the factor graph formulation, we represent each
measurement residual r as a factor in the graph shown in
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Fig. 2. (a): The proposed fixed-lag VIO factor graph. Each camera frame corresponds to an IMU state x = [ξ>,v>,b>]>, where ξ ∈ R6 is the
minimum representation of the robot pose. v ∈ R3 is the velocity. b ∈ R6 is the IMU bias. The l’s are the visual landmark variables. Measurement factors
are represented by solid black circles, including prior factors, IMU factors, and stereo projection factors. (b): Suppose we define the recent frame window
size n = 2. When a new frame Fi arrives (green), the proposed algorithm looks at frame Fi−2 being a keyframe (shaded circle), or a regular frame
(transparent circle). In this case, Fi−2 is not a keyframe, the proposed method employs midframe marginalization including only the IMU constraints while
discarding all visual measurements. (c): If Fi−2 is a keyframe, the proposed method employs keyframe marginalization with sparsification. It includes all
variables and measurement information in the Markov blanket (in red).

Fig. 2a. The two main types of factors are IMU preintegration
factors and stereo projection factors. The preintegrated IMU
factor between xi and xi+1 allows efficient relinearization
during optimization. Its residual consists of three terms:

rIi =
[
r>∆ξi r>∆vi

r>∆bi

]>
(3)

where r∆ξi and r∆vi and r∆bi corresponds to the residuals
of pose, velocity, and biases respectively.

Given the states and the measurement residuals, the opti-
mal solution for the factor graph is the maximum a posteriori
(MAP) estimate according to

X ?w = arg min
Xw

∥∥r0

∥∥2

Σ0
+∑

Zi∈{Kw,Fw}

(
‖rIi‖2ΣIi

+
∑
cij∈Ci

‖rcij‖2Σcij

) (4)

where r0 represent the prior residual, and the corresponding
measurement covariances Σ0, ΣIi , and Σcij . To solve the
nonlinear SLAM problem, optimizers such as Dogleg and
Levenberg-Marquart iterate on the linearized cost of (4) with
respect to δXw. At iteration k, the linearized residual of IMU
and camera measurements evaluate at the linearization point
X̂ (k)
w are in the forms:

rIi(X̂ (k)
ω + δX (k+1)

ω ) ≈ rIi(X̂ (k)
ω ) +H

(k)
Ii
δX (k+1)

ω

rcij (X̂ (k)
ω + δX (k+1)

ω ) ≈ rcij (X̂ (k)
ω ) +H(k)

cij δX
(k+1)
ω

(5)

where

H
(k)
Ii

=
∂rIi
∂Xω

∣∣∣∣∣
Xω=X̂ (k)

ω

, H(k)
cij =

∂rcij
∂Xω

∣∣∣∣∣
Xω=X̂ (k)

ω

(6)

are the IMU and camera measurement Jacobians. The opti-
mizer solves for δX (k+1)

w and updates the window as:

X̂ (k+1)
w = X̂ (k)

w ⊕ δX (k+1)
w (7)

The ⊕ operator follows vector addition in Rn and matrix
multiplication on Lie manifolds such as SE(3) for poses.

IV. FIXED-LAG VIO WITH SPARSIFICATION

To bound computational complexity, a fixed-lag smoother
marginalizes out selected states to maintain a fixed-size
optimization window. Marginalization on the Gaussian dis-
tribution is typically done by Schur complement on the
linearized information matrix Λ(MB) of the Markov blanket
(X(MB)), which is the collection of state variables incident to
the marginalized variables. In Fig. 3a, the red variables and
factors show an example of the Markov blanket with respect
to the marginalized IMU states of keyframe Kk−m.

Λ(MB) is constructed by the measurement Jacobian of the
factors in the Markov blanket:

Λ(MB) =H>0 Σ−1
0 H>0 +H>IiΣ

−1
Ii
HIi+

∑
cij∈Ci

H>cijΣ−1
cijHcij (8)

Note that Λ(MB) is sparse and its entries correspond to the
connectivity in the graph. Define XR ∈ X(MB) the remaining
states, and XM ∈ X(MB) the marginalized states, we can
perform Schur-Complements on XM :

Λ(MB) =

[
ΛXRXR

ΛXMXR

ΛXRXM
ΛXMXM

]
Λt =ΛXRXR

− ΛXRXM
Λ−1
XMXM

ΛXMXR

(9)

where Λt is the target information corresponding to the dense
prior. Marginalization degrades the algorithm efficiency as
the factor graph loses its sparse structure. To cope with such
issue, keyframe-based VIO methods such as OKVIS [28]
and VINS-MONO [33] selectively discard measurements to
maintain sparsity during marginalization. For landmarks that
are not observed by the recent frames, they are marginalized
altogether with the marginalized IMU states. It is important
to note that such marginalize strategies while maintaining
efficiency, potentially lose the capabilities re-estimating the
positions of the landmarks and therefore become less accu-
rate. This motivates the main contributions of our work in
minimizing information loss during marginalization.

A. Marginalization Strategy
As shown in Fig. 2a, the proposed method maintains

n recent frames, and m keyframes. When a new frame



(a) Original Markov blanket (b) Marginalized graph (c) Sparsified graph (d) Re-insertion back to the original graph

Fig. 3. (a): The proposed method first calculates the Markov blanket information Λ(MB) from the oldest keyframe. (b): The new target information is then
calculated by Schur-Complement. The resulting matrix corresponds to a dense prior factor that connects to every variable in the Markov blanket. (c): Given
Λt, we employ sparsification with the designed nonlinear factor topology, which we will recover the corresponding information Λr for each measurement.
(d): The proposed method re-inserts the sparsified topology back to the original fixed-lag window, which retains sparsity and structural similarity.

Fi enters the window, we check whether frame Fi−n is a
keyframe to select the following midframe marginalization
or keyframe marginalization strategy. In order to enforce
consistency, we adopt the method from Dong-Si et al. [9]
by using the prior linearization points when corresponding
measurement Jacobians are first evaluated.

1) Midframe Marginalization: Fig. 2b shows an exam-
ple of the midframe marginalization strategy. Follow both
OKVIS and VINS-MONO on midframe marginalization,
we discard all projection factors but only include inertial
constraints. This is to keep sparsity but also avoid repeated
observations on the landmarks when the robot is stationary.
The resulting factor is a marginalized IMU measurement that
connects to the two corresponding IMU states.

2) Keyframe Marginalization: Fig. 2c shows an example
of the keyframe marginalization strategy. If frame Fi−n
is a keyframe, we perform marginalization on the oldest
keyframe at Kk−m and landmarks that are only connected to
the frame. Unlike existing methods, the rest of the landmarks
are preserved during the marginalization step, so that they
remain in the optimization window for further nonlinear up-
dates. The result is a dense prior connecting to the next state
and all the landmarks defined by the Markov blanket. The
blue prior factor in Fig. 3b shows an example connectivity of
this prior. In the real system, the associated information Λt
can be large as shown in Fig. 4a, which significantly reduces
computational efficiency. However, keeping landmarks as
variables in the optimization window allows further nonlinear
updates for subsequent optimizations to reach the optimal
solution. To reintroduce sparsity to the graph, our method
applies sparsification to the dense prior information.

B. Information Sparsification

The dense prior information Λt defines a multivariate
Gaussian p(Xt) ∼ N (µt,Λt), with the mean equals to the
current linearization point Xt of the Markov blanket. We use
the global linearization point for the Markov blanket since
global priors are included in the marginalization.

Our method first specifies a factor graph topology T for
the Markov blanket, which induces a sparsified distribution
ps(Xt) ∼ N (µs,Λs). We follow NFR [30] to recover the

(a) Target information Λt (b) Measurement Jacobian Hs by
proposed topology

(c) Sparsified information Λs (d) Recovered Measurement infor-
mation Λr

Fig. 4. The diagram illustrates the sparsity of the corresponding matrix in
pairs of images. (a) is the target information from the Markov blanket.
(b) is the measurement Jacobian matrix corresponding to (13). (c) is
the sparsified information corresponding to (14). (d) is the recovered
measurement information corresponding to (13). In each image pair, the
left image, the height in the 3D bar graph represent the magnitude of the
log absolute value. The corresponding right image shows the informative
entries above 10−5 threshold.

approximate distribution such that the KLD from ps(Xt) to
p(Xt) is minimized:

DKL(p(Xt)‖ps(Xt))

=
1

2

(
〈Λs,Σt〉 − log det(Λs) + ‖Λ

1
2
s (µs − µt)‖22 − d

) (10)

where Σt = Λ−1
t .

For each factor in T , one must define the sparsified
measurement zs, the sparsified measurement model hs and
the measurement covariance Σs = Λ−1

s , such that zs =
hs(µs)+v, v ∼ N (0,Σs). First, we set the measurements zs
of each factor to be the expected measurement considering
the current state estimate zs = hs(µt). This induces the
approximate distribution µs = µt which minimizes (10).



TABLE I
ROOT-MEAN-SQUARE ATE (METER) ON THE EUROC DATASET

MH V1 V2
01 easy 02 easy 03 medium 04 difficult 05 difficult 01 easy 02 medium 03 difficult 01 easy 02 med.

Proposed 0.059 0.060 0.099 0.238 0.187 0.060 0.094 0.257 0.080 0.212
OKVIS 0.160 0.106 0.176 0.208 0.292 0.050 0.061 0.127 0.055 0.081
OKVIS (ours) 0.182 0.144 0.278 0.310 0.401 0.272 0.292 0.353 0.153 0.270
VINS-MONO* 0.284 0.237 0.171 0.416 0.308 0.072 0.120 0.159 0.058 0.097
ROVIO 0.354 0.362 0.452 0.919 1.106 0.125 0.160 0.170 0.220 0.392
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Fig. 5. The diagram shows the comparison of the proposed method against other state-of-the-art algorithms on the EuRoC datasets [3]. Each color
represents the result of an algorithm specified by the legend on the top right. The bar value specifies the Root-Mean-Square Error (RMS) of the Absolute
Trajectory Error (ATE) metric in meters. Overlaying on each bar, there is an error bar that shows the mean and the standard deviation (std) of the ATE.

Next we look explain the definition of the measurement
models. Section IV-C details the method to recover Λr for
every measurement.

To design the topology, we consider that 1) Λs should best
approximate Λt and 2) T maintains the sparsity of the graph
for future optimizations and 3) T retains structural similarity
to the original graphs. Given the structure of the Markov
blanket in our VIO formulation, the most informative entries
of Λt (see Fig. 4a) are located at the main diagonal blocks
and off-diagonal entries corresponding to IMU state and
landmarks. Therefore, we have designed the corresponding
topology shown in Fig. 3c. The topology consists of inde-
pendent unary prior factors and binary relative measurement
factors. The dense prior information always include the
remaining IMU state xR corresponding to frame Kk−m+1

and all the landmarks LR = {lp ∈ Xt} .
Denote RR the rotation, and pR the translation of the

pose represented by ξR. We design two types of nonlinear
topological measurement models to encapsulate the most
informative entries in Λt. The first is the individual priors
for the IMU state xR,

hr(ξR) = ξR, hr(vR) = vR, hr(bR) = bR (11)

and the second is the relative pose-to-landmark measurement
model

hr(ξR, lp) = R−1
R (lp − pR), ∀lp ∈ Xt (12)

To construct the sparse information Λs of the topology using

(11) and (12), we first define Hs and Λr as

Hs =


...

H
(j)
s
...

 , Λr =


. . . 0

Λ
(j)
r

0
. . .

 (13)

where H(j)
s and Λ

(j)
r are the Jacobian and the unknown infor-

mation matrix of the j-th nonlinear topological measurement
model. An example of Hs is shown in Fig. 4b. Then Λs can
be written as

Λs = H>s ΛrHs (14)

The independent nonlinear topological measurements en-
sure Λr to be block-diagonal, which can be recovered as
described in the following section.

C. Topology Measurement Covariances Recovery

With Λt and Hs provided, one can formulate a convex
optimization based on KLD to recover the information Λr
from (13) [30][10]:

min CKL = 〈H>s ΛrHs,Σt〉 − log det(H>s ΛrHs)

s.t. Λr � 0, Λr is block diagonal
(15)

Typically this constrained optimization requires either Inte-
rior Point methods (IP) or limited-memory Projected Quasi-
Newton (PQN) [34] and the recently proposed Factor De-
scent Algorithm [39]; however, PQN is only superlinear con-
vergence while IP method requires Hessian. Both methods
are costly in terms of computational resources. Because our



(a) The execution time of proposed algorithm over keyframe ID. The
optimization time is in blue, and the marginalization time is in red. (Left)
MH 02 easy dataset. (Right) V1 02 medium dataset

(b) (Left pair) The run-time analysis boxplot of the proposed algorithm on
MH 02 easy dataset. On the left is the breakdown of total optimization and
marginalization time. On the right is the breakdown of time spent on the
steps of the marginalization procedure. As shown, the marginalization time
is mostly spent on recovering the measurement covariances. (Right pair)
The same run-time analysis on the V1 02 medium dataset.

Fig. 6. The detailed run-time analysis of EuRoC datasets.

measurement model always provide a full-rank and invertible
Jacobian Hs, we are able to solve for (15) in closed-form:

Λ(i)
r =

(
{HsΣtH

>
s }(i)

)−1
(16)

where (·)(i) denotes the i-th matrix block. The solution from
(16) is unique and optimal by the convexity of (15). The
proof is shown in [30] by examining the gradient of (15):

∂CKL

∂Λ
(i)
r

=
{
Hs[Σt − (H>s ΛrHs)

−1)]HT
s

}(i)

=
{
HsΣtH

T
s −HsH

−1
s Λ−1

r H−>s HT
s

}(i)

=
{
HsΣtH

>
s − Λ−1

r

}(i)

(17)

Since (15) is an instance of MAXDET problem [40], the
optimal solution is given by the sufficient and necessary
condition for (17) to be 0.

Fig. 4d shows the recovered sparse information Λr, where
each block corresponds to a nonlinear topological measure-
ment. Our method then replaces the original dense prior Λt
with sparsified topology T shown in Fig. 3d. The updated
smoothing window from (4) now includes the sparsified
measurement residuals rs with the corresponding covariance
Σ

(i)
r = Λ

(i)−1
r .

V. EXPERIMENTAL RESULTS

A. Implementation

We implement our method in a complete VIO pipeline that
includes a visual frontend that matches stereo features, and a

(a) (b)

(c)

Fig. 7. (a) Our custom built Autel X-Star Premium drone with the visual-
inertial payload. It consists of two uEye UI-3241LE-M-GL cameras running
at 10Hz and a synchronized Epson G364 IMU running at 250Hz. (b) An
outdoor data sequence with the proposed algorithm running onboard. The
total distance is approximately 48m with the final drift 0.55m (1.11% error).
(c) A walk through of 4th floor Newel Simon Hall of Carnegie Mellon
University. The total distance is approximately 170m, with the final drift
about 0.3m (0.17% error)

backend optimizer. The visual frontend implementation using
OpenCV follows the typical pipeline of Shi-Tomashi Corner
detector and KLT optical flow tracking for both temporal
and stereo images. We implemented a Levenberg-Marquart
optimizer and a factor graph based fixed-lag smoother using
the GTSAM library [8]. All experiments are run on an
Ubuntu desktop with Intel i7-6700 @3.40GHz CPU.

B. Real-time Hardware Test

We have demonstrated our algorithm running real-time
onboard using a custom built Autel X-Star Premium drone
as shown in Fig. 7a. The visual-inertial payload includes
two uEye UI-3241LE-M-GL cameras recording at 10Hz and
a synchronized Epson G364 IMU recording at 250Hz. We
tested the proposed algorithm outdoors as shown in Fig. 7b.
In the outdoor test, we hand-held the drone and traveled a
total distance ≈48 meter with the final drift of 0.55 meter
(1.11% error). Fig. 7c shows a trajectory walking through the
Newell Simon Hall of Carnegie Mellon University. The total
length of the sequence is ≈170 meter with the final position
drift of 0.3 meter (0.17% error). For visualizations, we have
included a link to a video showing the proposed algorithm
running onboard with dynamic motions and trajectory plots.

C. Public Test Dataset

We evaluate the proposed method using the EuRoC visual-
inertial dataset [3] by the metric of the Absolute Trajectory
Error (ATE). ATE indicates the global consistency of the
estimated trajectory by comparing the absolute distance to
the ground truth [36]. The EuRoC dataset is recorded by
a VI sensor with synchronized 20Hz stereo images and



TABLE II
RUN TIME ANALYSIS ON THE EUROC DATASET

Optimization (unit: s) Marginalization (unit: s)
Mean RMSE Std Mean RMSE Std

M
H

01 easy 0.054 0.066 0.039 0.248 0.308 0.182
02 easy 0.043 0.051 0.027 0.230 0.279 0.158
03 med 0.053 0.064 0.037 0.151 0.211 0.147
04 diff 0.034 0.042 0.024 0.088 0.129 0.094
05 diff 0.040 0.048 0.026 0.115 0.163 0.115

V
1

01 easy 0.021 0.025 0.016 0.018 0.031 0.026
02 med 0.023 0.026 0.012 0.020 0.029 0.021
03 diff 0.021 0.026 0.015 0.015 0.034 0.031

V
2

01 easy 0.027 0.033 0.018 0.039 0.062 0.049
02 med 0.016 0.017 0.006 0.009 0.013 0.010
03 diff X X X X X X

200Hz IMU data. The dataset consists of three major sets of
trajectories, Machine Hall (MH), Vicon Room 1 (V1), and
Vicon Room 2 (V2), which vary in smooth and aggressive
motions in large and small indoor environment. The V1
and V2 dataset present motion blur and lighting change that
produce challenges to the state estimator.

We compare our method against stereo OKVIS [28] and
monocular VINS-MONO [33], which are the state-of-the-art
fixed-lag VIO systems. The loop-closure and online calibra-
tion of VINS-MONO functionality are deactivated to com-
pare pure odometry performance (denote VINS-MONO*).
We have included ROVIO [2] to compare fixed-lag VIO
approaches with a filtering-based approach. Lastly, to our
best knowledge, we implemented OKVIS’s marginalization
strategy using our GTSAM framework. This is to directly
compare the proposed algorithm with OKVIS’s marginal-
ization strategy by standardizing the frontend visual module,
since OKVIS’s frontend module utilizes its backend informa-
tion for robustness. All results are generated offline in order
to ensure the results are the comparison of pure accuracy.

The ATE results are shown in Table. I, and to better
visualize we include a bar graph in Fig. 5. The result
illustrates our proposed method outperforms the existing
methods in four out of five trials in the MH dataset, and
achieves comparable results in most of the V1 and V2
datasets. However, in V1 03 difficult and V2 02 medium
datasets, the proposed method results in errors significantly
larger than those from OKVIS and VINS-MONO. In both
cases, the dynamic lighting change has caused the stereo
camera images vary in grayscale. Consequently it signifi-
cantly decreases the performance of our frontend matching
algorithm. The sudden loss of visual information has caused
a discrepancy in the state estimate. However, prior to the loss
of features, our method out performs the existing method.
It is important to note that both OKVIS and our proposed
algorithm fail in running the V2 03 difficult dataset because
of the motion blur. Both our frontend modules have failed
to matched stereo features and the state estimate eventually
diverges. One idea is to compute both sparse features and
direct photometric odometry to handle the blurry images.

D. Run-time Analysis

To demonstrate that our algorithm is appropriate for real-
time application, we conduct time profile on the proposed

method on the EuRoC dataset with 300 feature cap. The
result is shown in Fig. 6 and Table. II. The statistics illustrate
that the factor graph optimization maintains around 0.02 to
0.05 second for all the datasets with various difficulties.
This is expected as the fixed-lag smoother retains a constant
size optimization window. The time spent on sparsification,
however, varies across datasets but remain bounded through
the sequence. From Fig. 6a, it is shown that the total
marginalization time, including sparsification, per frame is
correlated with the number of features being optimized. In
fact, in the MH 02 easy dataset, our method spends more
time in marginalization than in the harder V1 02 medium
dataset.

We have also time profiled each step in the sparsification
pipeline shown in Fig. 6b. It is important to note that the
majority of time is spent on recovering the measurement
information using (16). However, there is a significant room
for improvement in the implementation, as (16) is clearly
highly parallelizable, although we do not take advantage of
that here. Furthermore, one can also postpone sparsification
step depending on computational resources as shown in [10].
With an improved implementation, more features can be
incorporated in the optimization and the required time for
marginalization will reduce.

VI. CONCLUSIONS

In this paper, we have introduced a novel fixed-lag smooth-
ing VIO framework with online information sparsification.
Compared to the existing methods, the proposed algorithm
not only retains sparsity and nonlinearity of the original opti-
mization but also minimizes information loss in the presence
of marginalization. Furthermore, we propose a factor graph
topology that retains structural similarity of the original
fixed-lag window. This allows continuous operation of our
algorithm, which is essential for navigating in exploration
applications. The proposed method is compared to existing
fixed-lag VIO systems and achieves competitive results. Even
though the algorithm runs offline, the time analysis has
shown its potential for real-time implementation.

For future works, we would like to explore the proposed
method with other factor graph topologies. For example, a
possible direction is utilizing Chow-Liu Tree by the measure
of mutual information between variables in the factor graph.

VII. ACKNOWLEDGMENT

We would like to thank Paloma Sodhi for the extensive
theoretical discussions. We would also like to thank the
authors of NFR [30] especially Mladen Mazuran, for the
discussion, clarification and code base for the NFR.

REFERENCES
[1] S. Agarwal, K. Mierle, and Others, “Ceres solver,” http://ceres-solver.

org.
[2] M. Bloesch, S. Omari, M. Hutter, and R. Siegwart, “Robust visual

inertial odometry using a direct EKF-based approach,” in IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems (IROS), 2015.

[3] M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder, S. Omari,
M. Achtelik, and R. Siegwart, “The EuRoC MAV datasets,” Intl.
J. of Robotics Research (IJRR), 2015. [Online]. Available: http:
//projects.asl.ethz.ch/datasets/doku.php?id=kmavvisualinertialdatasets

http://ceres-solver.org
http://ceres-solver.org
http://projects.asl.ethz.ch/datasets/doku.php?id=kmavvisualinertialdatasets
http://projects.asl.ethz.ch/datasets/doku.php?id=kmavvisualinertialdatasets


[4] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira,
I. Reid, and J. J. Leonard, “Past, present, and future of simultaneous
localization and mapping: Toward the robust-perception age,” IEEE
Trans. on Robotics (TRO), vol. 32, no. 6, pp. 1309–1332, 2016.

[5] N. Carlevaris-Bianco, M. Kaess, and R. Eustice, “Generic factor-based
node removal: Enabling long-term SLAM,” IEEE Trans. on Robotics
(TRO), vol. 30, no. 6, pp. 1371–1385, Dec. 2014.

[6] S. Choudhary, V. Indelman, H. I. Christensen, and F. Dellaert,
“Information-based reduced landmark SLAM,” in IEEE Intl. Conf. on
Robotics and Automation (ICRA), vol. 2015-June, no. June, 2015, pp.
4620–4627.

[7] F. Dellaert and M. Kaess, “Factor graphs for robot perception,”
Foundations and Trends in Robotics, vol. 6, no. 1-2, pp. 1–139, Aug.
2017.

[8] F. Dellaert, “Factor graphs and GTSAM: A hands-on introduction,”
Georgia Tech, Tech. Rep., Sep. 2012. [Online]. Available: https:
//research.cc.gatech.edu/borg/sites/edu.borg/files/downloads/gtsam.pdf

[9] T. C. Dong-Si and A. I. Mourikis, “Motion tracking with fixed-lag
smoothing: Algorithm and consistency analysis,” in IEEE Intl. Conf.
on Robotics and Automation (ICRA), 2011, pp. 5655–5662.

[10] K. Eckenhoff, L. Paull, and G. Huang, “Decoupled, consistent node
removal and edge sparsification for graph-based SLAM,” in IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems (IROS), Oct 2016, pp.
3275–3282.

[11] J. Engel, V. Koltun, and D. Cremers, “Direct sparse odometry,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 40,
no. 3, pp. 611–625, March 2018.

[12] J. Engel, J. Sturm, and D. Cremers, “Camera-based navigation of a
low-cost quadrocopter,” in IEEE/RSJ Intl. Conf. on Intelligent Robots
and Systems (IROS), 2012, pp. 2815–2821. [Online]. Available:
http://ieeexplore.ieee.org/document/6385458/

[13] R. Eustice, M. Walter, and J. Leonard, “Sparse extended information
filters: insights into sparsification,” in IEEE/RSJ Intl. Conf. on Intelli-
gent Robots and Systems (IROS), Aug. 2005, pp. 3281–3288.

[14] C. Forster, L. Carlone, F. Dellaert, and D. Scaramuzza, “On-manifold
preintegration for real-time visual-inertial odometry,” IEEE Trans. on
Robotics (TRO), vol. 33, no. 1, pp. 1–21, 2017.

[15] U. Frese, “A proof for the approximate sparsity of SLAM information
matrices,” in IEEE Intl. Conf. on Robotics and Automation (ICRA),
no. April, 2005, pp. 329–335.

[16] J. A. Hesch, D. G. Kottas, S. L. Bowman, and S. I. Roumeliotis, “Con-
sistency analysis and improvement of vision-aided inertial navigation,”
IEEE Trans. on Robotics (TRO), vol. 30, no. 1, pp. 158–176, 2014.

[17] G. Huang, M. Kaess, and J. Leonard, “Consistent sparsification
for graph optimization,” in European Conference on Mobile Robots
(ECMR), Barcelona, Spain, Sep. 2013, pp. 150–157.

[18] G. P. Huang and S. I. Roumeliotis, “On filter consistency of
discrete-time nonlinear systems with partial-state measurements,”
Proc. American Control Conference (ACC), pp. 5468–5475, 2013.
[Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.
htm?arnumber=6580693

[19] G. P. Huang, A. I. Mourikis, and S. I. Roumeliotis, “Observability-
based rules for designing consistent EKF SLAM estimators,” Intl. J.
of Robotics Research (IJRR), vol. 29, no. 5, pp. 502–528, 2010.

[20] V. Ila, J. M. Porta, and J. Andrade-Cetto, “Information-based compact
pose SLAM,” IEEE Trans. on Robotics (TRO), vol. 26, no. 1, pp.
78–93, 2010.

[21] V. Ila, L. Polok, M. Solony, and P. Svoboda, “Slam++-a highly
efficient and temporally scalable incremental slam framework,” Intl.
J. of Robotics Research (IJRR), vol. 36, no. 2, pp. 210–230, 2017.
[Online]. Available: https://doi.org/10.1177/0278364917691110

[22] V. Indelman, S. Williams, M. Kaess, and F. Dellaert, “Information
fusion in navigation systems via factor graph based incremental
smoothing,” Journal of Robotics and Autonomous Systems (RAS),
vol. 61, no. 8, pp. 721–738, Aug. 2013.

[23] M. Kaess, A. Ranganathan, and F. Dellaert, “iSAM: Incremental
smoothing and mapping,” IEEE Trans. on Robotics (TRO), vol. 24,
no. 6, pp. 1365–1378, Dec. 2008.

[24] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. Leonard, and F. Del-
laert, “iSAM2: Incremental smoothing and mapping using the Bayes
tree,” Intl. J. of Robotics Research (IJRR), vol. 31, no. 2, pp. 216–235,
Feb. 2012.

[25] G. Klein and D. Murray, “Parallel tracking and mapping on a camera
phone,” International Symposium on Mixed and Augmented Reality
(ISMAR), pp. 83–86, 2009.

[26] K. Konolige, M. Agrawal, and J. Sola, “Large scale visual odometry
for rough terrain,” in IEEE/RSJ Intl. Conf. on Intelligent Robots and
Systems (IROS), 2007, pp. 201–212.

[27] R. Kummerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard,
“g2o: A general framework for graph optimization,” in IEEE Intl.
Conf. on Robotics and Automation (ICRA), Shanghai, China, May
2011.

[28] S. Leutenegger, S. Lynen, M. Bosse, R. Siegwart, and
P. Furgale, “Keyframe-based visualinertial odometry using
nonlinear optimization,” Intl. J. of Robotics Research (IJRR),
vol. 34, no. 3, pp. 314–334, 2015. [Online]. Available:
http://journals.sagepub.com/doi/10.1177/0278364914554813

[29] M. Li and A. Mourikis, “High-precision, consistent EKF-based visual-
inertial odometry,” Intl. J. of Robotics Research (IJRR), vol. 32, no. 6,
pp. 690–711, 2013.

[30] M. Mazuran, W. Burgard, and G. D. Tipaldi, “Nonlinear factor
recovery for long-term SLAM,” Intl. J. of Robotics Research
(IJRR), vol. 35, no. 1-3, pp. 50–72, 2016. [Online]. Available:
http://journals.sagepub.com/doi/10.1177/0278364915581629

[31] A. I. Mourikis and S. I. Roumeliotis, “A multi-state Kalman filter for
vision-aided inertial navigation,” in IEEE Intl. Conf. on Robotics and
Automation (ICRA), no. April, 2007, pp. 10–14.

[32] R. Mur-Artal and J. D. Tardós, “Visual-inertial monocular SLAM with
map reuse,” IEEE Robotics and Automation Letters (RA-L), vol. 2,
no. 2, pp. 796–803, 2017.

[33] T. Qin, P. Li, and S. Shen, “VINS-Mono: A robust and ver-
satile monocular visual-inertial state estimator,” arXiv preprint
arXiv:1708.03852, 2017.

[34] M. Schmidt, E. van den Berg, M. P. Friedlander, and K. Murphy,
“Optimizing costly functions with simple constraints: A limited-
memory projected quasi-newton algorithm,” in Proceedings of The
Twelfth International Conference on Artificial Intelligence and Statis-
tics (AISTATS), Clearwater Beach, Florida, April 2009, pp. 456–463.

[35] M. A. Skoglund, G. Hendeby, and D. Axehill, “Extended Kalman filter
modifications based on an optimization view point,” in Intl. Conf. on
Information Fusion (FUSION), July 2015, pp. 1856–1861.

[36] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A
benchmark for the evaluation of RGB-D SLAM systems,” IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems (IROS), pp. 573–580,
2012.

[37] S. Thrun, Y. Liu, D. Koller, A. Y. Ng, Z. Ghahramani, and
H. Durrant-Whyte, “Simultaneous localization and mapping with
sparse extended information filters,” Intl. J. of Robotics Research
(IJRR), vol. 23, no. 7-8, pp. 693–716, 2004. [Online]. Available:
https://doi.org/10.1177/0278364904045479

[38] V. Usenko, J. Engel, J. Stückler, and D. Cremers, “Direct visual-inertial
odometry with stereo cameras,” in IEEE Intl. Conf. on Robotics and
Automation (ICRA), May 2016, pp. 1885–1892.

[39] J. Vallv, J. Sol, and J. Andrade-Cetto, “Graph slam sparsification
with populated topologies using factor descent optimization,” IEEE
Robotics and Automation Letters (RA-L), vol. 3, no. 2, pp. 1322–1329,
April 2018.

[40] L. Vandenberghe, S. Boyd, and S.-P. Wu, “Determinant maximization
with linear matrix inequality constraints,” SIAM Journal on Matrix
Analysis and Applications, vol. 19, no. 2, pp. 499–533, 1998.
[Online]. Available: https://doi.org/10.1137/S0895479896303430

[41] M. R. Walter, R. M. Eustice, and J. J. Leonard, “Exactly sparse
extended information filters for feature-based SLAM,” Intl. J. of
Robotics Research (IJRR), vol. 26, no. 4, pp. 335–359, 2007.

[42] Y. Wang, R. Xiong, Q. Li, and S. Huang, “Kullback-Leibler diver-
gence based graph pruning in robotic feature mapping,” in European
Conference on Mobile Robots (ECMR), Sept 2013, pp. 32–37.

[43] S. Weiss, M. W. Achtelik, S. Lynen, M. Chli, and R. Siegwart, “Real-
time onboard visual-inertial state estimation and self-calibration of
mavs in unknown environments,” in IEEE Intl. Conf. on Robotics and
Automation (ICRA), May 2012, pp. 957–964.

[44] K. J. Wu, A. M. Ahmed, G. A. Georgiou, and S. I. Roumeliotis, “A
square root inverse filter for efficient vision-aided inertial navigation
on mobile devices,” Robotics: Science and Systems (RSS), 2015.

[45] Y. Yang, J. Maley, and G. Huang, “Null-space-based marginalization:
Analysis and algorithm,” in IEEE/RSJ Intl. Conf. on Intelligent
Robots and Systems (IROS), no. October, 2017, pp. 6749–6755.
[Online]. Available: http://ieeexplore.ieee.org/document/8206592/

https://research.cc.gatech.edu/borg/sites/edu.borg/files/downloads/gtsam.pdf
https://research.cc.gatech.edu/borg/sites/edu.borg/files/downloads/gtsam.pdf
http://ieeexplore.ieee.org/document/6385458/
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6580693
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6580693
https://doi.org/10.1177/0278364917691110
http://journals.sagepub.com/doi/10.1177/0278364914554813
http://journals.sagepub.com/doi/10.1177/0278364915581629
https://doi.org/10.1177/0278364904045479
https://doi.org/10.1137/S0895479896303430
http://ieeexplore.ieee.org/document/8206592/

	Introduction
	Related Work
	Problem Formulation
	Fixed-Lag VIO With Sparsification
	Marginalization Strategy
	Midframe Marginalization
	Keyframe Marginalization

	Information Sparsification
	Topology Measurement Covariances Recovery

	Experimental Results
	Implementation
	Real-time Hardware Test
	Public Test Dataset
	Run-time Analysis

	Conclusions
	Acknowledgment

