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Simultaneous localization and mapping (SLAM) 
problems are increasingly formulated as probabilistic 
inference in graphical models. A commonly 
employed class of graphical models is a factor graph 
that is capable of representing factorization of 
probability distribution functions.

SLAM problems using factor graphs are, however, 
traditionally formulated as unconstrained 
optimizations. In this project, we would like to 
extend the factor graph formulation to solve a SLAM 
optimization problem with nonlinear robot dynamics 
constraints. Our results demonstrate the capabilities 
of factor graphs for general optimization problems.

Results

Below we formulate the robot state estimation and 
control problem as that of a constrained 
optimization using factor graphs,
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We solve the problem using a factor graph version of a Sequential Quadratic Programming (SQP) objective with 
Xi, Xj ⊂ X as sets of primal variables and λj  the dual variables, that is,

Figure 1. Large-scale SLAM problem and its factor graph representation [1]

Figure 2. A sample control and estimation problem of robot moving from a start 
               position to the goal position

Figure 3. The factor graph representing control and estimation problem

We solve the above update in two stages, by representing the problem as a primal and a dual factor graph. The 
solutions of each graph are used to update the primal and dual variables respectively.

At k-th iteration, the Newton update on the KKT condition is:

Complete process is mathematically expressed as,

Figure 4. Original nonlinear constrained factor graph (left) is solved by decomposing it as SQP primal linear graph (middle) and dual linear graph (right) 

Cost functions for estimation and control objectives are,  

Figure 5. Implementation pipeline for solving an SQP iteration update
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Our experimental setup constitutes a simulated 2D world 
with a forward moving non-holonomic robot system 
whose states are defined as,
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where, is the factorized objective cost function and
     is the dynamics equality constraint derived on Lie-Manifold.  

and dynamics F(x,u) are defined as,

In our experiments, we initialize states not very far from the groundtruth. This assumption is valid because this is 
intended to be an online estimation method. Therefore, at the start of each iteration, the previously estimated 
solution should be close to the minimum. Currently, our results do not include the model predictive control 
estimation. Our preliminary testing shows that with prediction states added, our simulation cannot initialize the 
controls close enough to the groundtruth. The results tend to diverge as the function becomes highly non-convex as 
shown in above failure cases. . 

Future directions include adding appropriate obstacle avoidance costs and adding constraints to the controls so the 
trajectory is feasible.

Figure 6. Simulated 2D world with robot states and landmark locations visualized

Figure 7. Estimated robot states and landmark locations against ground truth for 2 simulated worlds (with noisy measurements) for multiple SQP iterations 
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Figure 8. Variation of Primal Objective Function with SQP Iterations


